The Color-Vision Circuit in the Medulla of Drosophila
نویسندگان
چکیده
BACKGROUND Color vision requires comparison between photoreceptors that are sensitive to different wavelengths of light. In Drosophila, this is achieved by the inner photoreceptors (R7 and R8) that contain different rhodopsins. Two types of comparisons can occur in fly color vision: between the R7 (UV sensitive) and R8 (blue- or green sensitive) photoreceptor cells within one ommatidium (unit eye) or between different ommatidia that contain spectrally distinct inner photoreceptors. Photoreceptors project to the optic lobes: R1-R6, which are involved in motion detection, project to the lamina, whereas R7 and R8 reach deeper in the medulla. This paper analyzes the neural network underlying color vision into the medulla. RESULTS We reconstruct the neural network in the medulla, focusing on neurons likely to be involved in processing color vision. We identify the full complement of neurons in the medulla, including second-order neurons that contact both R7 and R8 from a single ommatidium, or contact R7 and/or R8 from different ommatidia. We also examine third-order neurons and local neurons that likely modulate information from second-order neurons. Finally, we present highly specific tools that will allow us to functionally manipulate the network and test both activity and behavior. CONCLUSIONS This precise characterization of the medulla circuitry will allow us to understand how color vision is processed in the optic lobe of Drosophila, providing a paradigm for more complex systems in vertebrates.
منابع مشابه
Multiple redundant medulla projection neurons mediate color vision in Drosophila.
The receptor mechanism for color vision has been extensively studied. In contrast, the circuit(s) that transform(s) photoreceptor signals into color percepts to guide behavior remain(s) poorly characterized. Using intersectional genetics to inactivate identified subsets of neurons, we have uncovered the first-order interneurons that are functionally required for hue discrimination in Drosophila...
متن کاملIdentifying Functional Connections of the Inner Photoreceptors in Drosophila using Tango-Trace
In Drosophila, the four inner photoreceptor neurons exhibit overlapping but distinct spectral sensitivities and mediate behaviors that reflect spectral preference. We developed a genetic strategy, Tango-Trace, that has permitted the identification of the connections of the four chromatic photoreceptors. Each of the four stochastically distributed chromatic photoreceptor subtypes make distinct c...
متن کاملAssessment of Acquired Color Vision Impairment among the Workers Exposed to Mixed Organic Solvents in an Automobile Manufacturing Company
Background and Objectives: Solvents are widely used in industries. Occupational exposure to organic solvents can lead to dysfunction of the nervous system. Since color-vision impairment can be a sensitive and early marker of neurotoxic damage, this study was designed to determine the influence of chronic occupational exposure to organic solvent mixtures on color vision. Materials and Methods: ...
متن کاملDirect Observation of ON and OFF Pathways in the Drosophila Visual System
Visual motion perception is critical to many animal behaviors, and flies have emerged as a powerful model system for exploring this fundamental neural computation. Although numerous studies have suggested that fly motion vision is governed by a simple neural circuit [1-3], the implementation of this circuit has remained mysterious for decades. Connectomics and neurogenetics have produced a surg...
متن کاملEvaluation of color blindness prevalence in male medical students of Mashhad medical school
Background: Color vision has an important role in daily activities and also learning special talents in different jobs, especially in the field of medicine. However, they are many people all over the world that has no insight into their color blindness and choose the study fields that are completely dependent on vision. Due to the importance of color vision in the field of medicine, we conducte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 18 شماره
صفحات -
تاریخ انتشار 2008